Tribocorrosion Performance of Cr/CrN Hybrid Layer as a Coating for Machine Components Used in a Chloride Ions Environment

Author:

Kowalski Marcin,Stachowiak Arkadiusz

Abstract

The aim of the article was to identify the effect of material hardness on the tribocorrosion process by comparing two material solutions. The analysis concerned the assessment of the process intensity and the identification of the mechanisms responsible for material loss. Possible mechanisms of tribocorrosion common for materials of high hardness were determined. Two classic material solutions (based on AISI 1045 steel) ensuring high hardness of the subsurface layers were tested: nitriding with an additional oxidation and impregnation process, and Physical Vapour Deposition (PVD) coating. In order to better identify the impact of hardness on the tribocorrosion process in each individual test, the pressures in the contact zone were increased. The tribocorrosion tests were carried out in 3.5% NaCl with free corrosion potential (OCP) for the ball-on-plate system. The results of the tribocorrosion tests presented in the article indicate that the synergy effect of friction and corrosion can be generated by the same mechanisms of material removal in both the material solutions tested. The intensity of these mechanisms is determined by material hardness. The likely mechanism of generating the synergy effect may be related to the formation of local pits along the friction path. The corrosion processes that are initiated by the cracking of the hard surface layer create local cavities, which most probably intensify frictional wear in successive time intervals. The area around the cavities facilitates plastic deformation, the initiation of cracking of the cyclically deformed layer and the tearing of larger pieces of material (especially at higher unit pressures in the frictional contact zone).

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3