Electrodeposition Based Preparation of Zn–Ni Alloy and Zn–Ni–WC Nano-Composite Coatings for Corrosion-Resistant Applications

Author:

Kumar Channagiri Mohankumar Praveen,Lakshmikanthan Avinash,Chandrashekarappa Manjunath Patel GowdruORCID,Pimenov Danil YurievichORCID,Giasin KhaledORCID

Abstract

Zinc (Zn) is one of the five most widely consumed metals in the world. Indeed, more than 50% of all the zinc produced is used in zinc-galvanizing processes to protect steel from corrosion. Zn-based coatings have the potential for use as a corrosion-resistant barrier, but their wider use is restricted due to the poor mechanical properties of Zn that are needed to protect steel and other metals from rusting. The addition of other alloying elements such as Ni (Nickle) and WC (Tungsten Carbide) to Zn coating can improve its performance. This study investigates, the corrosion performance of Zn–Ni coating and Zn–Ni–WC composite nanocoatings fabricated on mild steel substrate in an environmentally friendly bath solution. The influence of WC nanoparticles on Zn–Ni deposition was also investigated. The surface morphologies, texture coefficients via XRD (X-ray diffraction), SEM (Scanning Electron Microscopy), and EDS (Energy-dispersive X-ray spectroscopy) were analyzed. The electrochemical test such as polarization curves (PC) and electrochemical impedance spectroscopy (EIS) resulted in a corrosion rate of 0.6948 Å/min for Zn–Ni–WC composite nanocoating, and 1.192 Å/min for Zn–Ni coating. The results showed that the Zn–Ni–WC composite nanocoating reduced the corrosion rate by 41.71% and showed an 8.56% increase in microhardness compared to the hardness of the Zn–Ni coating. These results are augmented to better wettable characteristics of zinc, which developed good interfacial metallurgical adhesion amongst the Ni and WC elements. The results of the novel Zn–Ni–WC nanocomposite coatings achieved a great improvement of mechanical property and corrosion protection to the steel substrate surface.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3