An Optimized PDMS Thin Film Immersed Fabry-Perot Fiber Optic Pressure Sensor for Sensitivity Enhancement

Author:

Luo Cheng,Liu Xiangnan,Liu Jinrong,Shen Jian,Li Hui,Zhang Shubin,Hu Jiabin,Zhang Qi,Wang Guanjun,Huang Mengxing

Abstract

To effectively control the critical thickness of a polydimethylsiloxane (PDMS) film and enhance the sensitivity characteristics of the fiber pressure sensor, we propose a new method to optimize the thickness of the PDMS film in a fiber tube. It is characterized by analyzing the relationship between the diffusion rate of the PDMS and its viscosity, and using an oven to solidify the PDMS to a certain extent to accurately control the diffusion rate and diffusion length of the PDMS in the fiber tube. We also used multiple transfer methods to control the volume of the PDMS in the fiber tube to minimize the thickness of the formed PDMS film. Fabry-Perot interference occurs when the surface of the PDMS film layer filled into the fiber tube and the adjacent single mode fiber/fiber tube form a joint surface. This method forms a new fiber-optic Fabry-Perot pressure sensor that is very sensitive to external pressure parameters. The experimental results show that the optimized film thickness will be reduced to an order of 20 μm. Correspondingly, the fiber-optic pressure sensor has a sensitivity of up to 100 pm/kPa, which is about 100 times that reported in the literature. The structure also has better resistance to temperature interference. To our knowledge, this is the first in-depth study of the effects of the PDMS viscosity coefficient, diffusion rate, and fiber pressure sensitivity in fiber. The film thickness optimization method has some advantages, including a low cost, good controllability, and good application value in high sensitivity pressure and sound wave detection.

Funder

Natural Science Foundation of Hainan Province

National Natural Science Foundation of China

National Key Technology Support Program

Shanxi Province Science Foundation for Youths

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3