Abstract
Titanium and titanium alloys have been extensively utilized in biomedical implants due to their excellent comprehensive mechanical properties and biocompatibility. In this study, a ZrN/Ag2O micro–nano gradient composite structure was prepared on the surface of pure Ti by multi-arc ion plating (MAIP) technique and metal vapor vacuum arc (MEVVA) ion implantation technology. This study indicated that a dramatic improvement in performance in the surface hardness (~1800 HV0.1) was attributed to the presence of the ceramic phase (ZrN) with high hardness included in composite structure. The relatively low wear rate of gradient composite structure confirmed its excellent performance in abrasion resistance and the abrasion mechanism of gradient composite structure was mainly abrasive wear. After the potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests, because of the synergy effect of ZrN micron coating and Ag2O nanoparticles, the ZrN/Ag2O gradient coatings indicated the highest free corrosion potential (Ecorr) and lowest corrosion current density (icorr) in Ringer’s solution, and the polarization resistances of multilayer coatings were greater than that of the substrate, exhibiting positive effects on retarding localized corrosion tendency. Additionally, the suitable dose of ZrN/Ag2O gradient composite coating can obtain antibacterial ability, which exerts no significant cytotoxicity and even excellent cytocompatibility over a longer service process. Furthermore, this study is conducive to design and develop for multifunctional coatings of implant materials.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献