Abstract
Recently, the efficient preparation techniques of zinc sulfide (ZnS) nanostructured films have drawn great attention due to their potential applications in optoelectronics. In this study, the low-cost and high-yield chemical bath deposition (CBD) technique was used to deposit ZnS nanostructured thin films. The effect of various deposition parameters such as time, pH, precursor concentration, and temperature on the morphology and energy bandgap (Eg) of the prepared thin films were investigated. The characterization of the prepared thin films revealed the formation of polycrystalline ZnS with Narcissus-like nanostructures. Moreover, the optical characterization showed inverse proportionality between both the transmission and Eg of the nanostructured thin films and the variation of the deposition parameters. A range of different Eg values between 3.92 eV with 20% transmission and 4.06 eV with 80% transmission was obtained. Tuning the Eg values and transmission of the prepared nanostructured films by manipulating the deposition parameters of such an efficient technique could lead to applications in optoelectronics such as solar cells and detectors.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献