Experimental Study and Mechanism Analysis of the Influence of Micro-Dimple Geometry on the Adhesion Strength of Textured Coatings

Author:

Fu Hao1ORCID,Yang Xiao2,Mei Mei3,Yang Jie2,Zhang Yanhu1ORCID,Ji Jinghu2,Fu Yonghong2

Affiliation:

1. Institute of Advanced Manufacturing and Modern Equipment Technology, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China

2. School of Mechanical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China

3. Intelligent Manufacturing College, Jiangsu College of Engineering and Technology, Nantong 226007, China

Abstract

Textured coating technology is an effective method to improve the friction and wear performance of mold surfaces. The adhesion strength at the interface between the texture and the coating is crucial for its long-term serviceability. This paper studies the adhesion strength of micro-dimple’s topography textured coatings, aiming to reveal the influence mechanism of micro-dimples on the adhesion strength of textured coating interfaces. Different diameters or texture area ratios of micro-dimples were prepared on the sample surface using a picosecond laser, followed by PVD coating deposition. Scratching tests and indentation tests were then conducted on the textured coating surface. The adhesion strength and crack propagation behavior of the coating on the surface of different samples were studied under dynamic and static contact conditions. The results showed that under dynamic contact conditions, the critical load for coating failure of most textured samples was higher than that of non-textured samples. As the depth and diameter of the micro-dimple’s topography increased, the critical load first increased and then decreased, with the maximum critical load being 14.9% higher than that of the non-textured samples. Under static contact conditions, almost no coating spalling was observed around the indentation on the surface of the micro-dimple’s topography textured coating, while the spalling areas of non-textured samples were mainly at the edges and surrounding areas of the indentation. In contrast, the spalling regions of the textured samples were primarily concentrated at the edges of the texture. It can be seen that the dimpled texture hinders crack propagation and reduces the interlocking network of cracks, thereby reducing coating spalling. The research results provide important theoretical guidance for the design and optimization of textured coatings on mold surfaces.

Funder

Basic Science Project of Colleges and Universities of Jiangsu Province

Jiangsu Province Post-Doctoral Research Funding Scheme

Major Project of Basic Science (Natural Science) Research in Universities of Jiangsu Province

Special Science and Technology Innovation Project of Young scientific and Technological talents of Nantong

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3