Abstract
The corrosion protection of coatings can be reinforced by the addition of entrapped corrosion inhibitors. β-cyclodextrin (β-CD) can form inclusion complexes with small inhibiting organic molecules that, when entrapped in coatings, allow the inhibitor release and adsorption at corrosion initiation sites. In this paper, several Nuclear Magnetic Resonance (NMR)-based experiments (e.g., Complexation-Induced Shifts (CIS), NMR titration, Diffusion-Ordered Spectroscopy (DOSY)) were performed to study the stability and geometry of a complex formed by β-cyclodextrin with 5-mercapto-1-phenyl-tetrazole (MPT). The complex was also detected by Electrospray Ionization (ESI) mass spectrometry and characterized by Fourier Transform Infrared (FTIR) spectra. Its influence on the protectiveness of a silane coating against bronze corrosion was evaluated in plain (AR) and concentrated (ARX10) synthetic acid rain, under different exposure conditions. In particular, the time evolution of the polarization resistance values during 20 days in ARX10 and the polarization curves recorded at the end of the immersions evidenced a higher protectiveness of the coating with the β-CD–MPT complex in comparison to that containing only MPT or only β-CD. The cyclic AR spray test carried out on coated bronze coupons with cross-cut scratches evidenced the absence of underfilm corrosion starting from the scratches only in the complex-containing coating.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献