Citric Acid Passivation of Titanium Dental Implants for Minimizing Bacterial Colonization Impact

Author:

Punset MiquelORCID,Vilarrasa JaviORCID,Nart José,Manero José María,Bosch Begoña,Padrós Roberto,Perez Roman A.ORCID,Gil JavierORCID

Abstract

Surface topography and physical-chemical properties usually play a key-role in both osseointegration improvement and bacterial colonization reduction over the surface of dental implants. The aim of this study is to compare the chemical and bacteriological behavior of two different acid passivation surface treatments on titanium c.p. grade 3 used for dental implant manufacturing. Surface roughness was evaluated using White Light Interferometry (WLI) in order to determine different roughness parameters such as average roughness (Sa), the spacing parameter (Sm) and the hybrid parameter of surface index area (SIA). Contact angle (CA) and surface free energy (SFE) were evaluated in order to establish the surface wettability of the different groups of samples. Titanium ion-release from the different samples was also been analyzed in Hank’s solution medium at 37 °C by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) at different immersion times. Bacterial viability adhesion assays were done using S. sanguinis (CECT 480, Spain) as a bacterial strain model of primary colonizer in oral biofilm formation. The bacteria attachment and morphology on Ti surfaces were determined using a live/dead staining method after 4 h of incubation and further analyzed by scanning electron microscope (SEM). Acid passivation surface treatments produced a statistically-significant (p < 0.05) roughness increase in all the evaluated parameters (Sa, Sm, SAI). The treatment with citric acid decreased the static contact angle (CA) and caused an increase in surface free energy (SFE) with a high polarization and oxidizing character. These physical-chemical surface characteristics obtained by means of citric acid passivation caused the bactericidal behavior as it has been proved in bacterial studies.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3