MOF-Derived Hetero-Zn/Co Hollow Core-Shell TMOs as Anode for Lithium-Ion Batteries

Author:

Pan Junfeng,Gong Ming,Cui Wenhao,Zheng Guoxu,Song Mingxin

Abstract

In this work, metal–organic frameworks (MOFs) were used as precursors to prepare Zn/Co oxide with a porous dodecahedral core-shell structure. Herein, a low-temperature self-assembly calcination and hydrothermal strategy of imidazole-based Zn-Co-MOF was used. As anode of lithium-ion batteries (LIBs), ZnO/Co3O4 has good cycling stability, the specific discharge capacity of ZnO/Co3O4 is stable at about 640 mAh g−1 after 200 cycles, and its coulombic efficiency (CE) is stable above 95% after the first 20 cycles. When the current density is 0.6 A/g, the discharge capacity is 420 mAh g−1. This excellent electrochemical performance is attributed to its unique porous hollow structure and unique heterojunction electrode interface, which improves the Li+ storage capacity, increases the contact area between the electrode and the electrolyte, and improves the overall electrochemical activity. In addition, the synergistic effect of ZnO and Co3O4 also plays an important role in improving the electrochemical performance.

Funder

Research initiation fund of Hainan University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3