Electrochemical and Optical Behavior of ZrN-Ag Coatings Deposited by Means of DC Reactive Magnetron Sputtering Technique

Author:

Mejía Claudia P.,Vanegas Henry S.ORCID,Olaya Jhon J.

Abstract

The formation of nanostructured transition metal nitride coatings by introducing a small amount of silver (Ag) content has been proven to be a good strategy for enhancing the physical properties of these materials. In this investigation, ZrN coatings with different Ag contents were deposited on an AISI 316L substrate using the DC reactive magnetron sputtering technique. The influence of the silver on the chemical composition, morphology, and microstructure was investigated using energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The functional properties, specifically the corrosion resistance and the optical reflectance of the deposited coatings, were investigated using electrochemical impedance spectroscopy (EIS) and UV-Visible-NIR, respectively. The results showed the formation of two nanocrystalline phases, fcc-ZrN and metallic fcc-Ag. On the surface of the deposited coatings, homogeneously distributed silver nanoparticles were observed, and they increased with the Ag atomic content. The chemical composition on the surface showed evidence of the formation of oxides, such as Zr-O and Zr-O-N, before and after the corrosion tests. The corrosion resistance of the AISI 316L substrate and the coatings was improved with the incorporation of Ag, and the optical reflectance increased with increasing the Ag content. Finally, this work investigated the effect of the incorporation of silver into a ZrN matrix for potential use as optical protective coatings.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3