Spin Coating of Silica Nanocolloids on Mica: Self-Assembly of Two-Dimensional Colloid Crystal Structures and Thin Films

Author:

Walker John1,Koutsos Vasileios1ORCID

Affiliation:

1. School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK

Abstract

The viability of spin-coating methods for the self-assembly of 150 nm diameter silica nanocolloids into large crystal structures on mica was investigated using different colloidal concentrations, accelerations, and rotational speeds. The samples were imaged by atomic force microscopy (AFM) in intermittent contact mode. Low colloidal concentration led to a size-dependent ordering configuration. The largest nanocolloidal particles formed crystalline close-packed structures that were surrounded by increasingly smaller nanocolloids configured into more polycrystalline or amorphous formations. This phenomenon became increasingly suppressed by increasing colloidal concentration. Two dimensional-fast Fourier transform (2D-FFT) radially averaged profiles of the topography images revealed increasing interparticle spacing with increasing rotational acceleration, from close-packed structuring at low accelerations to increasingly spaced packing at high acceleration (>800 rpm/s). This behaviour is attributed to rapid liquid shedding from the increased acceleration. Analysis with radial distribution functions quantified the extent of ordering and revealed an optimum spin speed that caused the formation of large, highly crystalline structures. This optimum spin speed is governed by the relationship between the rotational speed and the liquid film thickness that affect the uniformity of the film and the magnitude of the capillary forces generated.

Funder

EPSRC

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3