Lubricating Properties of Cyano-Based Ionic Liquids against Tetrahedral Amorphous Carbon Film

Author:

Kawada ShouheiORCID,Okubo Hikaru,Watanabe Seiya,Tadokoro Chiharu,Tsuboi Ryo,Sasaki Shinya,Miyatake Masaaki

Abstract

Ionic liquids have unique characteristics, which render them ideal candidates as new base oils or additives. In particular, there are great expectations from the combination of diamond-like carbon and cyano-based ionic liquids. Lubricating properties of cyano-based ionic liquids have been studied on specific tetrahedral amorphous carbon (ta-C) films. After lubrication, ta-C film/ta-C film contact interface exhibits exceedingly low friction. Therefore, it is necessary to understand this low friction phenomenon. The current study evaluated the lubricating mechanism of cyano-based ionic liquids against ta-C films. 1-Butyl-3-methylimidazolium dicyanamide ((BMIM)(DCN)) and 1-butyl-3-methylimidazolium tricyanomethane ((BMIM)(TCC)) were used as lubricants, with the latter exhibiting low friction coefficient of 0.03. Steel cylinders and disks with ta-C films were used as test specimens. Raman spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and thermogravimetric analysis (TGA) helped us understand the mechanism of low friction induced by (BMIM)(TCC). Graphitization of the ta-C film at high temperatures might have caused the reduction in friction between the films. Similarly, anion adsorption on the worn surface at high temperatures also led to reduced friction. However, the TGA result showed a different trend than that of the sliding test. Our results indicate that the cyano-based ionic liquids underwent tribo-decomposition at low temperatures. Further, a minimum temperature was required for the adsorption of anions onto the sliding surface.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3