Coupled Modeling of Anisotropic Stress-Induced Diffusion and Trapping of Nitrogen in Austenitic Stainless Steel during Nitriding and Thermal Annealing

Author:

Moskaliovienė Teresa1,Andriūnas Paulius1,Galdikas Arvaidas12ORCID

Affiliation:

1. Physics Department, Kaunas University of Technology, Studentu 50, LT-51368 Kaunas, Lithuania

2. Department of Physics, Mathematics and Biophysics, Lithuanian University of Health Sciences, Eivenių Str. 4, LT-50166 Kaunas, Lithuania

Abstract

In this paper, nitrogen diffusion is investigated in single-crystalline austenitic stainless steel during modified layer formation and thermal annealing. A generalized system of diffusion equations is derived within a thermodynamic framework from Fick’s laws, which describe nitrogen flux under multiple driving forces, including a concentration gradient and the gradient of hydrostatic stress. Trapping and detrapping phenomena are considered within this model, and nitrogen flux is distinguished depending on whether nitrogen is in a lattice or a trapping site. Furthermore, the effects of anisotropic elasticity in single-crystal austenitic stainless steel on the stress field are investigated. The proposed model is used to simulate the nitrogen transportation process in single-crystalline AISI 316L during ion beam nitriding and after isothermal annealing at three different crystalline orientations. The results of our theoretical predictions are compared with experimental results taken from the literature. It is shown that during isothermal annealing, nitrogen diffusion becomes significantly slower than during nitriding. The diffusion coefficient during the annealing process, compared with the nitriding process, decreases by factors of 4.3, 3.3, and 2.5 for the orientations (001), (011), and (111), respectively.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3