Effect of B Content on Microstructure and Wear Resistance of Fe-3Ti-4C Hardfacing Alloys Produced by Plasma-Transferred Arc Welding

Author:

Zong Lin,Guo NingORCID,Li Rongguang,Yu Hongbing

Abstract

The Fe-3Ti-xB-4C (x = 1.71, 3.42, 5.10, 6.85 wt. %) hardfacing alloys are deposited on the surface of a low-carbon steel by plasma transferred arc (PTA) weld-surfacing process. Microstructure, hardness and wear resistance have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), Rockwell hardness tester and abrasive wear testing machine, respectively. The results show that the microstructure in all alloys is composed of austenite, martensite, Fe23(C,B)6, Ti(C,B) and Fe2B. The volume fraction of eutectic borides and Ti(C,B) carbides increases with increasing B content. Many brittle bulk Fe2B phase arises when the boron content increases to 6.85%, which causes the formation of microcracks in the hardfacing layer. The microhardness of the hardfacing alloys is significantly improved with the B addition, however, the wear resistance of hardfacing alloys increases firstly and then decreases with increasing of B content. The hardfacing alloy with the 5.10% B content has the best wear resistance, which is attributed to high volume fraction of eutectic borides and fine Ti(C,B) particles distributed in the austenite and lath martensite matrix with high hardness and toughness. The formation of brittle bulk Fe2B particles in the hardfacing alloy with the 6.85% B leads to the fracture and spalling of hard phases during wear, thus, reducing the wear resistance.

Funder

Natural Science Foundation of Liaoning Province of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3