Author:
Grigoriev F. V.,Sulimov V. B.,Tikhonravov A.V.
Abstract
In this article, a combined approach for studying the optical anisotropy of porous thin films obtained by the glancing angle deposition is presented. This approach combines modeling on the atomistic and continuum levels. First, thin films clusters are obtained using the full-atomistic molecular dynamics simulation of the deposition process. Then, these clusters are represented as a medium with anisotropic pores, the shapes parameters of which are determined using the Monte Carlo based method. The difference in the main components of the refractive index is calculated in the framework of the anisotropic Bruggeman effective medium theory. The presented approach is tested and validated by comparing the analytical and simulation results for the model problems, and then is applied to silicon dioxide thin films. It is found that the maximum difference between the main components of the refractive index is 0.035 in a film deposited at an angle of 80°. The simulation results agree with the experimental data reported in the literature.
Funder
Russian Science Foundation
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献