Effect of Surface Modification with TiO2 Coating on Improving Filtration Efficiency of Whisker-Hydroxyapatite (HAp) Membrane

Author:

Zhang Chenning,Uchikoshi TetsuoORCID,Liu Lihong,Kikuchi MasanoriORCID,Ichinose Izumi

Abstract

Whisker-like hydroxyapatite (HAp) particles were prepared by controlling particle growth via hydrothermal synthesis. The surface modification for the hydrothermally synthesized HAp whiskers was accomplished by TiO2 coating. After the TiO2 modification, the zeta potential of the HAp whiskers was significantly improved from +8.6 to +21 mV at pH = 8.5. A free-standing membrane (diameter of ~4.5 cm and thickness of ~0.2 mm) was fabricated by using the TiO2-coated HAp whiskers and was used to separate the Au nanoparticles (size = 5 nm and zeta potential = −38.6 mV at pH = 8.5) at a significantly high filtration efficiency of ~100%. The achieved high filtration efficiency was considered to be the result of effectively utilizing the electrostatic interaction between the positively-charged TiO2-coated HAp whiskers and negatively-charged Au nanoparticles. The excellently biocompatible and highly effective TiO2-coated HAp membrane would be potentially applied as biological and artificial separators in biotechnology processes for the biomedicine field.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3