Research of Curing Time and Temperature-Dependent Strengths and Fire Resistance of Geopolymer Foam Coated on an Aluminum Plate

Author:

Le Van SuORCID,Louda PetrORCID

Abstract

Geopolymer foam (GF) uses a potassium activator and can be cured at high temperatures, which can improve its mechanical properties. In this study, we attempted to test this hypothesis by comparing the flexural and compressive strength, apparent density and fire resistance of GF. The composition of the GF used in the experiment included a potassium activator, basalt ground fiber and aluminum powder with a mass ratio to the binder of 0.45, 0.3 and 0.015, respectively. The samples were cured at room temperature and at 50, 70, 85 and 105 °C with a curing time of 2, 4, 6, 12 and 24 h. Then, the samples were kept until being tested on the third, seventh, 14th and 28th day. The results showed that the flexural and compressive strength and apparent density improved and stabilized after seven days at 85 °C. Furthermore, the GF exhibited a substantial increase after three days in its flexural strength by 111% and compressive strength by 122.9% at the optimal temperature of 85 °C for 2 h compared to the values at RT after 28 days. The GF had an apparent density of 0.558–0.623 g/cm3 on the 28th day. As a new alternative to aluminum materials, investigating the fire resistance of sandwich panels (an aluminum plate covered with a GF layer) is important for their safe impregnation. Sandwich panels with thicknesses of 10–20 mm were exposed to a gas fire. The test results showed that the sandwich panels had significantly improved fire resistance compared to unprotected panels. The longest fire resistance times for the aluminum plate coated with 20 mm of GF layer thickness was 7500 s. Thus, the GF coated on the aluminum plate exhibited superior fire resistance and a reduced heat transfer rate compared to uncoated panels.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference61 articles.

1. Geopolymer Chemistry and Application Saint-Quentin: Institut Geopolymere;Davidovits,2015

2. Geopolymers: Man-made rock geosynthesis and the resulting development of very early high strength cement;Davidovits;J. Mater. Educ.,1994

3. Green synthesis of high porosity waste gangue microsphere/geopolymer composite foams via hydrogen peroxide modification

4. Design of lightweight metakaolin based geopolymer foamed with hydrogen peroxide

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3