Abstract
Thermoelectric generators can directly harvest and convert ambient thermal energy into electricity, which makes it ideal for thermal energy conversion. However, the limited working temperature gradient developed by direct solar radiation severely restricts the performance and the application of solar thermoelectric generators. Here, we report a multilayer thin film integrating a solar selective absorbing coating and a thermoelectric layer, where an in-plane temperature gradient was established. The temperature gradient was relatively large since the absorbed solar energy could only flow through the restricted cross-section of the thin film, representing a high thermal concentration. The fabricated thin-film solar thermoelectric generators (100 mm × 15 mm) achieve an open-circuit voltage of about 300 mV, and an output power of 0.83 μW under AM 1.5G conditions. Our work opens up a promising new strategy to achieve the simple and cost-effective conversion of solar energy into electricity by thermal concentration.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces