Cold Spray Process for Co-Deposition of Copper and Aluminum Particles

Author:

Hu Shijie1,Li Hongjun1,Zhang Liying2,Xu Yuzhen3

Affiliation:

1. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. Hangzhou Zhijiang Switchgear Stock Co., Ltd., No. 4518, Xiaoqing Avenue, Xiaoshan District, Hangzhou 311234, China

3. Zhejiang Technical Innovation Service Center, Hangzhou 310000, China

Abstract

Mixed-particle spraying has been applied to various aspects of industrial cold spraying for a long time. Due to the complexity of mixed-particle simulations, most studies only consider dozens of particles when considering particle collisions. This paper combines computational fluid dynamics and a discrete element method to analyze the entire trajectories of mixed particles. With simulations involving over one hundred thousand particles, we accurately tracked the three-dimensional positions and velocities of each particle, effectively visualizing their journey from feeder to substrate. By comparing the particles’ velocities to their critical velocities, we could directly assess the deposition efficiency, achieving a comprehensive and accurate simulation of the complete cold spray process. The numerical model was validated using a multi-experimental analysis. The particle distribution and deposition area from the numerical model matched well with the experimental data. It was found that the mutual collision of copper and aluminum particles increased the number of copper particles, surpassing the critical velocity in the mixed powder by 24.2%. When copper particles and aluminum particles collided, the displacement of aluminum particles was more than three times that of copper particles in the direction perpendicular to the jet. This collision caused the aluminum particles to be more dispersed.

Funder

Zhejiang Province Public Welfare Technology Application Research Project

Science and Technology Program of Zhejiang Province

2021 industrial technology based public service platform project

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3