Solvent Effects on the Structural and Optical Properties of MAPbI3 Perovskite Thin Film for Photovoltaic Active Layer

Author:

Qaid Saif M. H.ORCID,Ghaithan Hamid M.,Al-Asbahi Bandar AliORCID,Aldwayyan Abdullah S.ORCID

Abstract

Controlling the crystallinity, homogeneity, and surface morphology is an efficient method of enhancing the perovskite layer. These improvements contribute toward the optimization of perovskite film morphology for its use in high-performance photovoltaic applications. Here, different solvents will be used in order to process the perovskite precursor, to improve the interfacial contacts through generating a smooth film and uniform crystal domains with large grains. The effect that the solvent has on the optical and structural properties of spin-coated methyl ammonium lead iodide (MAPbI3) perovskite thin films prepared using a single-step method was systematically investigated. The spin-coating parameters and precursor concentrations of MAI and PbI2 were optimized to produce uniform thin films using the different solvents N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and γ-butyrolactone (GBL). The effect that the solvent has on the morphology of the MAPbI3 films was examined to determine how the materials can be structurally altered to make them highly efficient for use in perovskite hybrid photovoltaic applications. Scanning electron microscopy (SEM) and X-ray diffractometry (XRD) results show that the synthesized MAPbI3 films prepared using DMSO, DMF, and GBL exhibit the best crystallinity and optical characteristics (photoluminescence (PL)), respectively, of the prepared films. The optical properties resulting from the noticeable improvement PL of the films can be clearly correlated with their crystallinity, depending on the solvents used in their preparation. The film prepared in DMSO shows the highest transmittance and the highest bandgap energy of the prepared films.

Funder

King Saud University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3