Carbon Steel Corrosion Induced by Sulfate-Reducing Bacteria: A Review of Electrochemical Mechanisms and Pathways in Biofilms

Author:

Liu Na1,Qiu Lina1ORCID,Qiu Lijuan2ORCID

Affiliation:

1. School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 10083, China

2. Experimental Teaching Center, College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China

Abstract

Microbial metal corrosion has become an important topic in metal research, which is one of the main causes of equipment damage, energy loss, and economic loss. At present, the research on microbial metal corrosion focuses on the characteristics of corrosion products, the environmental conditions affecting corrosion, and the measures and means of corrosion prevention, etc. In contrast, the main microbial taxa involved in metal corrosion, their specific role in the corrosion process, and the electron transfer pathway research are relatively small. This paper summarizes the mechanism of microbial carbon steel corrosion caused by SRB, including the cathodic depolarization theory, acid metabolite corrosion theory, and the biocatalytic cathodic sulfate reduction mechanism. Based on the reversible nature of electron transfer in biofilms and the fact that electrons must pass through the extracellular polymers layer between the solid electrode and the cell, this paper focuses on three types of electrochemical mechanisms and electron transfer modes of extracellular electron transfer occurring in microbial fuel cells, including direct-contact electron transfer, electron transfer by conductive bacterial hair proteins or nanowires, and electron shuttling mediated by the use of soluble electron mediators. Finally, a more complete pathway of electron transfer in microbial carbon steel corrosion due to SRB is presented: an electron goes from the metal anode, through the extracellular polymer layer, the extracellular membrane, the periplasm, and the intracellular membrane, to reach the cytoplasm for sulfate allosteric reduction. This article also focuses on a variety of complex components in the extracellular polymer layer, such as extracellular DNA, quinoline humic acid, iron sulfide (FeSX), Fe3+, etc., which may act as an extracellular electron donor to provide electrons for the SRB intracellular electron transfer chain; the bioinduced mineralization that occurs in the SRB biofilm can inhibit metal corrosion, and it can be used for the development of green corrosion inhibitors. This provides theoretical guidance for the diagnosis, prediction, and prevention of microbial metal corrosion.

Funder

Chinese National Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3