Abstract
Protective coating is an effective way to extend materials’ high-temperature service life. In order to improve the high-temperature oxidation resistance of AISI 304 stainless steel, mullite films with different layers were successfully prepared by the sol-gel method and the sintering process on the surface of stainless steel. The effect of the film layers on the high-temperature oxidation resistance of stainless steel at 900 °C for 100 h was studied. The analysis results of oxidation kinetics, X-rays diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive analysis (EDS) show that Al1.4Si0.3O2.7 mullite film effectively improved the high-temperature oxidation resistance of stainless steel. The sample with three-layer mullite film has the best high-temperature oxidation resistance. The mass gain and oxidation spalling mass are only 4.6% and 34.5% of those of the uncoated sample after 100 h cyclic oxidation at 900 °C. A chromium oxide layer was formed at the interface of mullite film and the substrate during the sintering process. The generation of selective Cr2O3 scale was promoted at the cyclic oxidation stage so that the sample with three-layers has excellent high-temperature oxidation resistance.
Funder
National Natural Science Foundation of China
Open fund of State Key Laboratory of Metal Material for Marine Equipment and Application
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献