Improvement of 3D Printing Cement-Based Material Process: Parameter Experiment and Analysis

Author:

Li ZihanORCID,Liu Huanbao,Cheng XiangORCID,Nie Ping,Yang Xianhai,Zheng GuangmingORCID,Su Hongxing,Jin WenyuORCID

Abstract

Three-dimensional printing concrete is a digital and automating construction technology, which is expected to solve a series of problems existing in the traditional construction industry, such as low automation, high labor intensity, low efficiency and high risk. However, there are still many technical and operational challenges. The purpose of this paper is to provide insights into the effects of process parameters on the geometry and stability of the printed layer. Firstly, a theoretical model is established to analyze the structure of the printed layer under different nozzle speeds, material flow rates and nozzle offset. Secondly, a slump test is carried out to select the optimal ratio suitable for 3D cement printers, and the specimen is printed under various conditions. Finally, based on the obtained parameters, multiple nozzles are used for printing, and a pressure value suitable for each nozzle in the nonlinear path is calculated. The experimental results show that theoretical model can sufficiently verify printing structure in different parameter intervals, and the process parameters (nozzle speed, material flow rate and nozzle offset) can be changed to achieve the best effect of cement-based material forming structure.

Funder

Natural Foundation of Shandong Province

National key research and development Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3