Investigation of the Tribological Properties and Corrosion Resistance of Multilayer Si-DLC Films on the Inner Surfaces of N80 Steel Pipes

Author:

Wang Shaolong1,Zhang Guangan2,Fu Anqing1,Cao Xueqian2ORCID,Yin Chengxian1,Liu Zhengyu2

Affiliation:

1. Tubular Goods Research Institute of CNPC, Xi’an 710077, China

2. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract

In order to solve the problem of the corrosion and wear of N80 metal pipelines exposed to corrosive media and abrasive sand during the development of petroleum resources, the proposed solution involves utilizing HC-PECVD technology to deposit a series of multilayer Si-DLC films with varying thicknesses on the inner surfaces of the N80 steel pipes. This investigation systematically explored the microstructure, mechanical properties, tribological features, and corrosion resistance of the multilayer Si-DLC films. Remarkably, after coating the multilayer (Si-DLC)40 film on the inner wall of the N80 tube, the friction coefficient decreased from 0.7~0.75 to 0.2~3, and the wear rate decreased by two orders of magnitude. In addition, the corrosion current decreased by 50%, and the impedance doubled in a 3.5 wt% NaCl solution saturated with CO2. Thus, the multilayer (Si-DLC)40 film on the inner wall of the N80 tube exhibited superior tribological properties and exceptional corrosion resistance. These findings are anticipated to furnish valuable data and technical insights for mitigating corrosion in N80 steel pipes during petroleum exploitation.

Funder

China National Petroleum Corporation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3