New Azo Dyes-Based Mg Complex Pigments for Optimizing the Anti-Corrosion Efficiency of Zinc-Pigmented Epoxy Ester Organic Coatings

Author:

Kohl Miroslav1ORCID,Alafid Fouzy1,Boštíková Karolína1,Bouška Marek1,Krejčová Anna1ORCID,Svoboda Jan1ORCID,Slang Stanislav1ORCID,Michalíčková Ludmila1,Kalendová Andréa1,Hrdina Radim1,Burgert Ladislav1,Schmidová Eva2ORCID,Deshpande Pravin P.3,Bhopale Abhijit A.3

Affiliation:

1. Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic

2. Jan Perner Transport Faculty, Educational and Research Centre in Transport, University of Pardubice, Doubravice 41, 533 53 Pardubice, Czech Republic

3. Department of Metallurgy and Material Science, College of Engineering Pune, Pune 411005, India

Abstract

This work addresses the possibilities of using synthesized novel magnesium complex dyes in zinc pigmented organic coatings based on epoxyester resin to reduce the zinc content in these coatings while maintaining or increasing the anticorrosive efficiency of them. The magnesium complexes Mg-Dye-I (C34H26MgN8O6), Mg-Dye-II (C26H19MgN3O5), Mg-Dye-III (C17H10MgN2O3), and Mg-Dye-IV (C25H18MgN4O6) with a series of azo carboxylate ligands were prepared from the diazo-coupling reaction of anthranilic acid with 5-methyl-2-phenyl-3-pyrazolone (Dye I; C17H14N4O3), anthranilic acid with naphthol AS-PH (Dye II; C26H21N3O5), anthranilic acid with 2-naphthol (Dye III; C17H12N2O3), and 2-amino-5-nitrophenol with naphthol AS-PH (Dye IV; C25H20N4O6). The synthesized novel magnesium complex dyes were characterized by analytical methods. Model coatings containing these dyes at pigment volume concentrations (PVCs) = 1, 3, 5 and 10% and zinc at a ratio of pigment volume concentration/critical pigment volume concentration (PVC/CPVC) = 0.60 were formulated to study the inhibitory properties of the individual synthesized magnesium complex dyes. Model coatings containing inorganic pigments (MgO and Ca-Mg-HPO4) at PVCs = 1%, 3%, 5% and 10% and zinc at PVC/CPVC = 0.60 were also formulated. The coating pigmented only by zinc at PVC/CPVC = 0.60 was prepared as a standard organic coating. Corrosion resistance was also evaluated by potentiodynamic polarization studies and electrochemical impedance spectroscopy. The properties of organic coatings were also tested using other standardized and derived corrosion tests. In addition, the mechanical properties of the studied organic coatings were determined using standard tests. The aim of the work was to verify the possible synergistic efficiency of novel magnesium complex dyes by improving the mechanical, anti-corrosion, and chemical properties of zinc pigmented organic coatings.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3