Tunable Coefficient of Thermal Expansion of Composite Materials for Thin-Film Coatings

Author:

Long XuORCID,Su Tianxiong,Chen Zubin,Su YutaiORCID,Siow Kim S.ORCID

Abstract

In most engineering applications, the coefficients of thermal expansion (CTEs) of different materials in integrated structures are inconsistent, especially for the thin-film multilayered coatings. Therefore, mismatched thermal deformation is induced due to temperature variation, which leads to an extreme temperature gradient, stress concentration, and damage accumulation. Controlling the CTEs of materials can effectively eliminate the thermally induced stress within the layered structures and thus considerably improve the mechanical reliability and service life. In this paper, randomly distributed fibers are incorporated into the matrix material and thus utilized to tune the material CTE from the macroscopical viewpoint. To this end, finite element (FE) modeling is proposed for fiber-reinforced matrix composites. In order to overcome the challenges of creating numerical models at a mesoscale, the random distribution of fibers in three-dimensional space is realized by proposing a fiber growth algorithm with the control of the in-plane and out-of-plane angles of fibers. The homogenization method is adopted to facilitate the FE simulations by using the representative volume element (RVE) of composite materials. Periodic boundary conditions (PBC) are applied to realize the prediction of the equivalent CTE of macroscopic composite materials with randomly distributed fibers. In the established FE model, the random distribution of carbon fibers in the matrix makes it possible to tune the CTE of the composite material by considering the orientation of fibers in the matrix. The FE predictions show that the volume fraction of carbon fibers in the composite materials is found to be crucial to macroscopic CTE, but results in minor variations in Young’s modulus and shear modulus. With the developed ABAQUS plug-in program, the proposed tuning method for CTE is promising to be standardized for industrial practice.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Open Cooperation Innovation Fund of Xi'an Modern Chemistry Research Institute

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3