Atmospheric-Pressure Plasma Jet-Induced Graft Polymerization of Composite Hydrogel on 3D-Printed Polymer Surfaces for Biomedical Application

Author:

Liao Shu-Chuan1ORCID,Wu Yu-De1,Siao Jhong-Kun1

Affiliation:

1. Department of Biomedical Engineering, Da Yeh University, Changhua 515006, Taiwan

Abstract

Poly(lactic acid) (PLA) is currently the most widely used material in 3D printing. PLA has good mechanical properties, chemical stability, and biodegradability, but its surface is hydrophobic and cannot be effectively used. The growth metabolism of attachments, how to increase the strength of PLA with high brittleness, and 3D printing of PLA materials for the biomedical field have always been a topic of research by scientists. This experiment used fused filament fabrication (FFF) to prepare structures. First, the 3D-printed polymer surfaces were treated with an atmospheric-pressure plasma jet (APPJ) to make the surface hydrophilic and increase the number of polar functional groups on the surface. Then, UV photo-grafting polymerization of 2-hydroxyethyl methacrylate (HEMA), poly(ethylene glycol) methacrylate (PEGMA), and hydroxyapatite (HAp) was applied onto the 3D-printed polymer surfaces. The experimental results of the water contact angle for the wettability test show that APPJ-treated and UV-grafted composite hydrogels become hydrophilic to activate the 3D-printed polymer surface successfully. For the in vitro study, the effect of APPJ treatment and composite hydrogel on the viability of osteoblast-like MG63 cells was examined using the Alamar Blue cell viability assay, indicating that biocompatibility has been improved in this study. This method is expected to have potential in the application of bone scaffolds in the future.

Funder

Ministry of Science and Technology, Taiwan

National Chung Hsing University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3