Effect of Electromagnetic Pulses on the Microstructure and Abrasive Gas Wear Resistance of Al0.25CoCrFeNiV High Entropy Alloy

Author:

Samoilova Olga,Shaburova NataliyaORCID,Krymsky Valeriy,Myasoedov Vyacheslav,Ostovari Moghaddam AhmadORCID,Trofimov Evgeny

Abstract

High entropy alloys (HEAs) are among the most promising materials, owing to their vast chemical composition window and unique properties. Segregation is a well-known phenomenon during the solidification of HEAs, which negatively affects their properties. The electromagnetic pulse (EMP) is a new technique for the processing of a metal melt that can hinder segregation during solidification. In this study, the effect of an EMP on the microstructure and surface properties of Al0.25CoCrFeNiV HEA is studied. An EMP, with an amplitude of 10 kV, a leading edge of 0.1 ns, a pulse duration of 1 ns, a frequency of 1 kHz, and pulse power of 4.5 MW, was employed for melt treatment. It was found that the microstructure of Al0.25CoCrFeNiV HEA changes significantly from dendritic, for an untreated sample, to lamellar “pearlite-like”, for an EMP treated sample. Moreover, EMPs triggered the formation of a needle-like σ-phase within the solid solution grains. Finally, these microstructural and compositional changes significantly increased the microhardness of Al0.25CoCrFeNiV HEA, from 343 ± 10 HV0.3 (without the EMP) to 553 ± 15 HV0.3 (after the EMP), and improved its resistance against gas-abrasive wear. Finally, an EMP is introduced as an effective route to modify the microstructure and phase formation of cast HEAs, which, in turn, opens up broad horizons for fabricating cast samples with tailorable microstructures and improved properties.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3