Effect of Micro-Dimple Texture on the Tribological Performance of Brass with Titanium Nitride (TiN) Coating under Oil-Lubricated Conditions

Author:

Zhang Cheng1,Chen Juan1,Ji Binbin1,Zhou Jie1,Zeng Liangcai2,Yang Yuping1

Affiliation:

1. School of Mechanical Engineering, Nantong University, Nantong 226019, China

2. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

Abstract

Surface texture and titanium nitride (TiN) coating have been established as effective methods for enhancing the tribological property of mechanical friction pairs. This study aims to investigate the tribological performance of dimple-textured surfaces with TiN coating under oil-lubricated conditions using a pin-on-disc wear experiment. Four types of pin samples with various end surfaces were designed, including bare rod samples, TiN-coated samples, textured samples, and TiN-coated/textured samples. The surface texture consists of a series of cylindrical micro-dimples with a diameter of 150 μm and a depth of 40 μm fabricated on the end surface of the pin. TiN coating treatment on the textured surface of the end face was performed by vacuum sputtering coating equipment. The study focuses on measuring and comparatively analyzing the friction coefficient, wear morphology, and binding force of the pin-disc friction pairs among the experiments. Compared with bare rod samples, TiN-coated/textured samples will reduce the friction coefficient (COF) of the pin-on-disc friction pair by at least 20% under oil-lubricated conditions in a 50 N normal contact load. The results indicate that the synergistic effect of dimple surface texture and TiN coating optimizes friction performance and reduces wear, highlighting the novelty of this study. Furthermore, the study identifies the hydrodynamic lubrication effect of the surface morphology formed by the dimple surface texture as a key factor in improving lubrication performance and reducing friction. Additionally, the dimple surface texture enables the mitigation of third body wear due to the wear debris storage function of the micro-dimples. This research provides valuable insights for the design and fabrication of mechanical friction pairs with high wear resistance under oil-lubricated conditions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province, China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3