Abstract
In the present work, the experimental study on laser processing of additively manufactured (AM) maraging steel part surface was conducted. Nanosecond pulsed laser at ablation mode was used for surface modification in oxidizing atmosphere. The morphology, roughness, elemental and phase composition, microhardness and tribological properties of the processed surfaces were investigated. The obtained results revealed that pulsed laser processing under the ablation mode in air allows obtaining modified surface with uniform micro-texture and insignificant residual undulation, providing 3 times lower roughness as compared with the as-manufactured AM part. The intensive oxidation of surface during laser processing results in formation of the significant oxides amount, which can be controlled by scanning speed. Due to the presence of the oxide phase (such as Fe2CoO4 and Ti0.11Co0.89O0.99), the hardness and wear resistance of the surface were significantly improved, up to 40% and 17 times, respectively. The strong correlation between the roughness parameter Ra and mass loss during the tribological test testifies the significant role of the obtained morphology for the wear resistance of the surface.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Reference36 articles.
1. Industrial Additive Manufacturing: A manufacturing systems perspective
2. Maraging steels,1990
3. Engineering Properties. INCO Databookshttps://www.nickelinstitute.org/media/1598/18_nickelmaragingsteel_engineeringproperties_4419_.pdf
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献