Dependence of Electrical Charge Transport on the Voltage Applied across Metal–Graphene–Metal Stack under Fixed Compressing Force

Author:

Daugalas Tomas1ORCID,Bukauskas Virginijus1,Lukša Algimantas1ORCID,Nargelienė Viktorija1,Šetkus Arūnas1

Affiliation:

1. Department of Physical Technologies, Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania

Abstract

While charge transport in the horizontal plane of graphene has been widely studied, there is only limited understanding about the transport across a stack of films that include graphene sheets. In this report, a model of a metal–graphene–metal stack was produced and investigated via detailed analysis of experimental dependences of electrical current on applied external voltage. Scanning probe microscopy (SPM) was used to measure the dependences of the local tunneling current on the voltage under fixed compressing force. The SPM platinum probe produced the compressing force on gold-supported graphene in the metal–graphene–metal system. The experimental results were explained by a model that included the pinning of the Fermi level of graphene to platinum and the related changes in the parameters of the potential barrier for the electron flow. It was demonstrated that low-voltage and high-voltage intervals can be identified in the charge transport across the metal–graphene–metal stack. In the high-voltage interval (approximately > |±0.7| V in the tested stack), the history of the current measurement was detected due to the charge accumulation. In the low-voltage interval, the current was determined by the electronic states near the Fermi level. In this interval, the graphene layer can function as a blocking gate for the electron transport in the metal–graphene–metal system.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference21 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3