Numerical Simulation of a Simplified Reaction Model for the Growth of Graphene via Chemical Vapor Deposition in Vertical Rotating Disk Reactor

Author:

Yang Bo12,Yang Ni13,Zhao Dan1,Chen Fengyang1,Yuan Xingping1,Hou Yanqing1,Xie Gang13

Affiliation:

1. Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550014, China

3. Kunming Metallurgical Research Institute, Kunming 650093, China

Abstract

The process of graphene growth by CVD involves a series of complex gas-phase surface chemical reactions, which generally go through three processes, including gas phase decomposition, surface chemical reaction, and gas phase diffusion. The complexity of the CVD process for growing graphene is that it involves not only chemical reactions but also mass, momentum, and energy transfer. To solve these problems, the method of numerical simulation combined with the reactor structure optimization model provides a good tool for industrial production and theoretical research to explore the influencing factors of the CVD growth of graphene. The objective of this study was to establish a simplified reaction model for the growth of graphene by chemical vapor deposition(CVD) in a vertical rotating disk reactor (VRD). From a macroscopic modeling perspective, computational fluid dynamics (CFD) was used to investigate the conditions for the growth of graphene by chemical vapor deposition in a high-speed rotating vertical disk reactor on a copper substrate surface at atmospheric pressure (101,325 Pa). The effects of gas temperature, air inlet velocity, base rotation speed, and material ratio on the surface deposition rate of graphene in a VRD reactor were studied, and the technological conditions for the preparation of graphene via the CVD method in a VRD reactor based on a special structure were explored. Compared with existing models, the numerical results showed the following: the ideal growth conditions of graphene prepared using a CVD method in a VRD reactor involve a growth temperature of 1310 K, an intake speed of 470 mL/min, a base speed of 300 rpm, and an H2 flow rate of 75 sccm; thus, more uniform graphene with a better surface density and higher quality can be obtained. The effect of the carbon surface deposition rate on the growth behavior of graphene was studied using molecular dynamics (MD) from a microscopic perspective. The simulation showed that the graphene surface deposition rate could control the nucleation density of graphene. The combination of macro- and microsimulation methods was used to provide a theoretical reference for the production of graphene.

Funder

National Natural Science Foundation of China

Key Science and Technology Support Project of Guizhou Province

Science and Technology Foundation of Guizhou Province, China

Natural Science Foundation of Guizhou Education Commission

Guizhou Science & Technology Commission

Guizhou Provincial Teaching Project

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3