Effects of Thermal Treatment on Microstructure and Wear Properties of Ni60/CeO2 Composite Coating 35CrMoV Steel by Laser Cladding

Author:

Liu Jianbo,Li Xiaohui,Bai Jing,Zhang Tong,Xu Yunhua,Yu Yuan

Abstract

Laser cladding Ni60/2.0 wt.%CeO2 self-lubricating anti-wear composite coatings on 35CrMoV steel were thermally treated at 25 °C, 500 °C, 600 °C and 700 °C for 1 h, respectively. The macroscopic morphology of composite coatings was characterized by optical microscopy. The evolution of microstructure was studied by scanning electron microscopy. The precipitated phase of the coating was analyzed by X-ray diffractometer. The microhardness and wear properties of the composite coatings were measured by microhardness tester and friction and wear test. The effects of thermal treatment and no thermal treatment on the mechanical properties of the composite coatings were systematically studied by the above experiments. The experimental analysis shows that the main phase composition of Ni60/2.0 wt.%CeO2 composite coating is γ-(Ni, Fe), Cr7C3, Cr23C6, CrB, CrFeB and Cr2Ni3. Meanwhile, in XRD, it can be seen that the diffraction peak has shifted to the left and the single diffraction peak is decomposed into double diffraction peaks with the thermal treatment at 700 °C, which indicates that the lattice in the coating phase has a certain distortion. Compared with the coatings without thermal treatment, Ni60 cladding layer has more uniform solute distribution and a denser and more uniform structure after thermal treatment at 700 °C. The laser cladding anti-wear composite coating demonstrates that the wear resistance performance shows the greatest improvement after thermal treatment at 700 °C.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Yulin

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3