Study of Asphalt Behavior on Pre-Wet Aggregate Surface Based on Molecular Dynamics Simulation and Surface Energy Theory

Author:

Cao Yaoxi1,Wang Yanhua2,Li He3,Chen Wuxing4

Affiliation:

1. Jilin Communications Polytechnic, Changchun 130026, China

2. Jinan City Planning and Design Institute, Jinan 250013, China

3. Guidance and Service Center for Student Employment and Entrepreneurship, Jilin University, Changchun 130026, China

4. School of Mines, China University of Mining and Technology, Xuzhou 221000, China

Abstract

The improvement of the performance of asphalt mixtures has been studied by scholars. This research proposes a new asphalt–mineral interface formation method, which is a pre-wet bitumen–mineral mixture. The formation process of the pre-wet asphalt–mineral interface was simulated by molecular dynamics simulation software. The diffusion coefficient, concentration distribution, and interfacial energy of the asphalt on the surface of the pre-wet mineral material and non-pre-wet mineral material were compared and analyzed. The simulation results show that the mineral surface diffusion rate of the asphalt after pre-wetting is increased by more than 50%, and the concentration in the X, Y, and Z directions is reduced by 0.8%, 4.6%, and 7.8%, respectively. At the same time, the interface energy between the bitumen and the pre-wet mineral was increased by more than 8%. The results of the molecular dynamics model are verified based on the surface energy theory and contact angle test. The experimental results show that the contact angle of the asphalt is smaller and the diffusion performance is better after pre-wetting. At the same time, the interface adhesion work between the asphalt and wet mineral surface increased by 4.3% in a dry environment, and the peeling work decreased by 41.1% in a water environment. Therefore, the author believes that the pre-wetting technology of the asphalt mixture has a certain feasibility and practicability.

Funder

National Natural Science Foundation of China

Jilin Province Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3