Affiliation:
1. TEKNIKER, Basque Research and Technology Alliance (BRTA), Plasma Coating Technologies Unit, C/Iñaki Goenaga 5, 20600 Eibar, Spain
2. Department of Engineering in Mining, Metallurgy and Science of Materials, Faculty of Engineering in Bilbao, Building I, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
Abstract
Cast Al-Si alloys, recognized for their excellent mechanical properties, constitute one of the most widely employed non-ferrous substrates in several sectors, and are particularly relevant in the transport industry. Nevertheless, these alloys also display inherent limitations that significantly restrict their use in several applications. Among these limitations, their low hardness, low wear resistance, or limited anti-corrosion properties, which are often not enough when the component is subjected to more severe environments, are particularly relevant. In this context, surface modification and the development of coatings are essential for the application of cast Al-Si alloys. This review focuses on the development of coatings to overcome the complexities associated with improving the performance of cast Al-Si alloys. Against this background, plasma electrolytic oxidation (PEO), an advanced electrochemical treatment that has revolutionized the surface modification of several metallic alloys in recent years, emerges as a promising approach. Despite the growing recognition of PEO technology, the achievement of high-performance coatings on cast Al-Si is still a challenge nowadays, for which reason this review aims to provide an overview of the PEO treatment applied to these alloys. In particular, the impact of the electrolyte chemical composition on the properties of the coatings obtained on different alloys exposed to harsh environments has been analyzed and discussed. By addressing the existing gaps and challenges, this paper contributes to a better understanding of the intricacies associated with the development of robust PEO coatings on cast Al-Si alloys.
Funder
Department of Education, Linguistic Policy and Culture of the Basque Government
Reference183 articles.
1. Robles Hernandez, F.C., Herrera Ramírez, J.M., and Mackay, R. (2017). Al-Si Alloys: Automotive, Aeronautical, and Aerospace Applications, Springer.
2. Review: Effect of Alloying Element on Al-Si Alloys;Kong;Adv. Mater. Res.,2014
3. The Characterization of Oxide Based Ceramic Coating Synthesized on Al-Si Binary Alloys by Microarc Oxidation;Gulec;Surf. Coat. Technol.,2015
4. High Performance Tribological Coatings on a Secondary Cast Al–Si Alloy Generated by Plasma Electrolytic Oxidation;Alves;Ceram. Int.,2021
5. Glazoff, M.V., Khvan, A.V., Zolotorevsky, V.S., Belov, N.A., and Dinsdale, A.T. (2019). Industrial and Perspective Casting Alloys, Elsevier.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献