Abstract
Bone tissue engineering is constantly in need of new material development with improved biocompatibility or mechanical features closer to those of natural bone. Other important factors are the sustainability, cost, and origin of the natural precursors involved in the technological process. This study focused on two widely used polymers in tissue engineering, namely polylactic acid (PLA) and thermoplastic polyurethane (TPU), as well as bovine-bone-derived hydroxyapatite (HA) for the manufacturing of core-shell structures. In order to embed the ceramic particles on the polymeric filaments surface, the materials were introduced in an electrical oven at various temperatures and exposure times and under various pressing forces. The obtained core-shell structures were characterized in terms of morphology and composition, and a pull-out test was used to demonstrate the particles adhesion on the polymeric filaments structure. Thermal properties (modulated temperature and exposure time) and the pressing force’s influence upon HA particles’ insertion degree were evaluated. More to the point, the form variation factor and the mass variation led to the optimal technological parameters for the synthesis of core-shell materials for prospect additive manufacturing and regenerative medicine applications.
Funder
Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces