Effect of One Sulfate-Reducing Bacterium SRB-Z Isolated from Pearl River on the Corrosion Behavior of Q235 Carbon Steel

Author:

Qi Hong1ORCID,Shi Qingshan1,Peng Ruqun1,Sun Tingli1,Zhang Zheng2,Li Liangqiu1,Xie Xiaobao1ORCID

Affiliation:

1. Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China

2. Guangdong Provincial Key Laboratory of Electronic Information Products Reliability Technology, Guangzhou 510610, China

Abstract

Sulfate-reducing bacteria (SRB) have long been reported to participate in metal corrosion processes in anoxic environments. However, existing theories still need enrichment by identifying more corrosive microorganisms and exploring more plausible microbiologically-influenced corrosion pathways. In this study, a strain SRB-Z was isolated from the Pearl River in Guangzhou, and its effect and mechanisms on corrosion of Q235 carbon steel were examined. The biofilms, corrosion products, pits, and corrosion electrochemistry were characterized by SEM, XPS, CLSM, EDS, white light interferometer 3D profilometry, and electrochemical analysis, respectively. The results of this study indicate that SRB-Z could cause serious pitting of Q235 carbon steel. The maximum pit depth reached 54 μm after immersion corrosion for 7 days. Strain SRB-Z promoted the cathodic reaction rate of Q235. The relative analyses revealed that pitting corrosion occurred because of galvanic corrosion caused by the formation of an FeS-SRB/Fe galvanic couple under the synergistic effect of the SRB-Z biofilm and its metabolite (H2S) on the Q235 coupon surfaces.

Funder

GDAS’ Project of Science and Technology Development

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3