Jointing of CFRP/5083 Aluminum Alloy by Induction Brazing: Processing, Connecting Mechanism, and Fatigue Performance

Author:

Guo Kang,Gou Guoqing,Lv Hang,Shan Meile

Abstract

Carbon fiber reinforced polymer (CFRP) is widely used in the lightweight design of high-speed trains due to its high specific strength. In order to further reduce the weight of the high-speed train body, it is necessary to study the joining process and fatigue properties of CFRP/aluminum alloys (CFRP/Al) structure. In this work, the CFRP plate and 5083P-O aluminum plate were successfully connected by an induction brazing method. The optimum parameters of induction brazing were determined to be an induction temperature of 290 °C, a normal pressure of 200 kPa, and a holding time of 5 s. After the 5083 plate was pre-anodized, the tensile strength of the CFRP/5083 joint reached a maximum value of 176.5 MPa. The anodization process introduced more surface micro-structures on the 5083 plate, leading to a better wetting behavior between CFRP and oxide film. Meanwhile, a new chemical bond, Al-O-C, was also formed at the interface of the CFRP/5083 joint. The fatigue limit of the CFRP/5083 joint was calculated to be 71.68 MPa through high-cycle fatigue (HCF) testing. The fatigue cracks initiated from the interface of CFRP/oxide film, and then propagated to base metal. Finally, the oxide film was peeled off from the base metal under shear stress, which contributed to the fracture of the CFRP/5083 joint. The bonding strength between CFRP and 5083 aluminum alloy is far from the conventional welded joints. Therefore, feasible approaches should be proposed to obtain a more robust bonding between CFRP and aluminum alloy in the future.

Funder

2020 Chengdu International Cooperation Funding Project

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3