Affiliation:
1. Department of Computer Science, National University of Sciences and Technology (NUST), Balochistan Campus (NBC), Quetta 87300, Pakistan
2. Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
Abstract
Nanofluids are considered as an effective way to enhance the thermal conductivity of heat transfer fluids. Additionally, the involvement of micro-organisms makes the liquid more stable, which is important in nanotechnology, bio-nano cooling systems, and bio-microsystems. Therefore, the current investigation focused on the examination of the thermodynamic and mass transfer of a Carreau–Yasuda magnetic bionanomaterial with gyrotactic micro-organisms, which is facilitated by radiative peristaltic transport. A compliant/elastic symmetric channel subject to partial slip constraints was chosen. The features of viscous dissipation and ohmic heating were incorporated into thermal transport. We use the Brownian and thermophoretic movement characteristics of the Buongiorno nanofluid model in this study. A set of nonlinear ordinary differential equations are created from the partial differential equations that control fluid flow. The governing system of differential equations is solved numerically via the shooting technique. The results of pertinent parameters are examined through velocity, temperature, motile micro-organisms, concentration, and heat transfer rate.
Funder
King Faisal University, Saudi Arabia
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献