Frequency Effect on the Structure and Properties of Mo-Zr-Si-B Coatings Deposited by HIPIMS Using a Composite SHS Target

Author:

Kiryukhantsev-Korneev Philipp V.ORCID,Sytchenko Alina D.ORCID,Loginov Pavel A.ORCID,Orekhov Anton S.ORCID,Levashov Evgeny A.ORCID

Abstract

Mo-Zr-Si-B coatings were deposited by high-power impulse magnetron sputtering at a pulse frequency of 10, 50, and 200 Hz. The coating structure was studied by scanning electron microscopy, energy-dispersive spectroscopy, glow-discharge optical-emission spectroscopy, transmission electron microscopy, and X-ray diffraction. The mechanical characteristics, adhesive strength, coefficient of friction, wear resistance, resistance to cyclic-dynamic-impact loading, high-temperature oxidation resistance, and thermal stability of the coatings were determined. The coatings, obtained at 10 and 50 Hz, had an amorphous structure. Increasing the frequency to 200 Hz led to the formation of the h-MoSi2 phase. As the pulse frequency increased from 10 to 50 and 200 Hz, the deposition rate rose by 2.3 and 9.0 times, while hardness increased by 1.9 and 2.9 times, respectively. The Mo-Zr-Si-B coating deposited at 50 Hz was characterized by better wear resistance, resistance to cyclic-dynamic-impact loading, and oxidation resistance at 1500 °C. Thermal stability tests of the coating samples heated in the transmission electron microscope column showed that the coating deposited at 50 Hz remained amorphous in the temperature range of 20–1000 °C. Long-term annealing in a vacuum furnace at 1000 °C caused partial recrystallization and the formation of a nanocomposite structure, as well as an increased hardness from 15 to 37 GPa and an increased Young’s modulus from 250 to 380 GPa, compared to those of the as-deposited coatings.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3