Effect of Structural and Material Modifications of Dye-Sensitized Solar Cells on Photovoltaic Performance

Author:

Gnida Paweł1ORCID,Schab-Balcerzak Ewa12ORCID

Affiliation:

1. Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowska Str., 41-819 Zabrze, Poland

2. Institute of Chemistry, University of Silesia, 9 Szkolna Str., 40-007 Katowice, Poland

Abstract

Dye-sensitized solar cells with synthesized phenothiazine derivative 3,7′-bis(2-cyano-1-acrylic acid)-10-ethyl-phenothiazine (PTZ) and commercial di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato)ruthenium(II) (N719) dyes were fabricated and characterized based on current–voltage measurements. The effect of the utilization of individual dyes and its mixture, chenodeoxycholic acid as co-adsorbent addition, replacement of I−/I3− by Co2+/3+ ions in electrolyte and platinum by semiconducting polymer mixture poly(3,4-ethylenedioxythiophene) polystyrene sulfonate in counter electrode was studied. Additionally, the effect of polymer thickness on the photovoltaic performance of the device was evaluated. Prepared photoanodes were characterized by UV–Vis spectroscopy and atomic force microscopy. The further modification of DSSCs involving the fabrication of tandem solar cells was carried out. The higher power conversion efficiency 7.60% exhibited tandem photovoltaic cell sensitized with dyes mixture containing co-adsorbent, I−/I3− ions in the electrolyte, and platinum in the electrode.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3