Structural and Electric Properties of Epitaxial Na0.5Bi0.5TiO3-Based Thin Films

Author:

Magalhaes Bruno,Engelhardt Stefan,Molin ChristianORCID,Gebhardt Sylvia E.,Nielsch Kornelius,Hühne RubenORCID

Abstract

Substantial efforts are dedicated worldwide to use lead-free materials for environmentally friendly processes in electrocaloric cooling. Whereas investigations on bulk materials showed that Na0.5Bi0.5TiO3 (NBT)-based compounds might be suitable for such applications, our aim is to clarify the feasibility of epitaxial NBT-based thin films for more detailed investigations on the correlation between the composition, microstructure, and functional properties. Therefore, NBT-based thin films were grown by pulsed laser deposition on different single crystalline substrates using a thin epitaxial La0.5Sr0.5CoO3 layer as the bottom electrode for subsequent electric measurements. Structural characterization revealed an undisturbed epitaxial growth of NBT on lattice-matching substrates with a columnar microstructure, but high roughness and increasing grain size with larger film thickness. Dielectric measurements indicate a shift of the phase transition to lower temperatures compared to bulk samples as well as a reduced permittivity and increased losses at higher temperatures. Whereas polarization loops taken at −100 °C revealed a distinct ferroelectric behavior, room temperature data showed a significant resistive contribution in these measurements. Leakage current studies confirmed a non-negligible conductivity between the electrodes, thus preventing an indirect characterization of the electrocaloric properties of these films.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3