Author:
Wang Jianxin,Li Zhenzhe,Li Fengxun
Abstract
A thermal barrier coating forms a high temperature resistant metal by the spraying of ceramics or other materials. Thermal barrier coatings are mainly used in the aviation field because they can significantly improve the thermal resistance of the aircraft engine turbine blades, combustion chamber and the other hot parts. In this paper, a thermal barrier coating model of the combustion chamber is established by using the finite element method. The stress field and displacement field of thermal barrier coatings under different thicknesses of the thermally grown oxide layer and thermal barrier coating layer, and the maximum operating temperature were studied. The results show that stress and deformation under the three thermal cycles increase with the increase in operating temperature and the thickness of thermally grown oxide (TGO) and thermal barrier coat (TBC), except for the case of TGO thickness of 2 μm.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces