Preparation and Characterisation of UV-Curable Flame Retardant Wood Coating Containing a Phosphorus Acrylate Monomer

Author:

Pellerin SolèneORCID,Samyn FabienneORCID,Duquesne Sophie,Landry VéronicORCID

Abstract

The application of a flame retardant coating is an effective solution to enhance the fire retardancy of wood flooring. However, finding the right balance between reducing the flame propagation and good overall coating properties while conserving wood appearance is complex. In order to answer this complex problem, transparent ultraviolet (UV)-curable flame retardant wood coatings were prepared from an acrylate oligomer, an acrylate monomer, and the addition of the tri(acryloyloxyethyl) phosphate (TAEP), a phosphorus-based monomer, at different concentrations in the formulation. The coatings’ photopolymerisation, optical transparency, hardness, water sorption and thermal stability were assessed. The fire behaviour and the adhesion of the coatings applied on the yellow birch panels were evaluated, respectively, using the cone calorimeter and pull-off tests. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) analyses were performed on the collected burnt residues to obtain a better understanding of the flame retardancy mechanism. Our study reveals that phosphorus monomer addition improved the coating adhesion and the fire performance of the coated wood without impacting the photopolymerisation. The conversion percentage remained close to 70% with the TAEP addition. The pull-off strength reached 1.12 MPa for the coating with the highest P-monomer content, a value significantly different from the non-flame retarded coating. For the same coating formulation, the peak of heat release rate decreased by 13% and the mass percentage of the residues increased by 37% compared to the reference. However, the flame-retarded coatings displayed a higher hygroscopy. The action in the condensed phase of the phosphorus flame retardant is highlighted in this study.

Funder

Natural Sciences and Engineering Research Council of Canada

Ministry for Economy, Science and Innovation (MESI) of Québec

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference57 articles.

1. De Coninck, H., Revi, A., Babiker, M., Bertoldi, P., Buckeridge, M., Cartwright, A., Dong, W., Ford, J., Fuss, S., and Hourcade, J.-C. (2022, September 13). Strengthening and Implementing the Global Response. Available online: https://www.ipcc.ch/report/sr15/chapter-4-strengthening-and-implementing-the-global-response/.

2. Prospects for Appearance Wood Products Ecodesign in the Context of Nonresidential Applications;Cobut;For. Prod. J.,2016

3. Flammability Behaviour of Wood and a Review of the Methods for Its Reduction;Lowden;Fire Sci. Rev.,2013

4. Recent Developments in the Chemistry of Halogen-Free Flame Retardant Polymers;Lu;Prog. Polym. Sci.,2002

5. Wilkie, C.A., and Morgan, A.B. (2010). Fire Retardancy of Polymeric Materials, CRC Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3