Recent Advances of Preparation and Application of Two-Dimension van der Waals Heterostructure

Author:

Song Luhang,Song Moru,Lu Zongyu,Yu Gang,Liang Zhan,Hou Wei,Liao QingweiORCID,Song YujunORCID

Abstract

With paramount electrical, optical, catalytic, and other physical and chemical properties, van der Waals heterostructures (vdWHs) have captured increasing attention. vdWHs are two-dimension (2D) heterostructures formed via van der Waals (vdW) force, paving the way for fabricating, understanding, and applications of 2D materials. vdWHs materials of large lattice constant difference can be fabricated together, forming a series of unique 2D materials that cannot form heterostructures earlier. Additionally, vdWHs provide a new platform to study the interlayer interactions between materials, unraveling new physics in the system. Notably, vdWHs embody short-range bonds weaker than covalent and ionic bonds, almost only interactions between nearest particles are considered. Owing to a clear interface, vdW interaction between two different components, devices made by vdWHs can bring amazing physicochemical properties, such as unconventional superconductivity, super capacitance in intercalation 2D structure, etc. Recently, impressive progress has been achieved in the controlled preparation of vdWHs and various applications, which will be summarized in this review. The preparation methods comprise mechanical exfoliation, liquid phase stripping, physical vapor deposition, chemical vapor deposition, and metalorganic chemical vapor deposition. The applications sections will focus on photoelectric devices, logic devices, flexible devices, and piezotronics. Finally, some perspectives in the future on the controlled preparation of vdWHs with desired properties for advanced applications will be discussed.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3