Experimental Study on Performance of Modified Cement-Based Building Materials under High-Water-Pressure Surrounding Rock Environment

Author:

Yao Jun12,Feng Di1ORCID,Wang Zhikui3ORCID,Peng Chengcheng1,Zhang Yonggang4,Han Lei4

Affiliation:

1. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China

2. College of Urban Construction and Transportation, Hefei University, Hefei 230601, China

3. China Railway Construction Underwater Shield Tunnel Engineering Laboratory, China Railway 14th Bureau Group Co., Ltd., Jinan 250101, China

4. Engineering Research Institute, China Construction Eighth Engineering Division Corp., Ltd., Shanghai 200122, China

Abstract

Traditional cement-based grouting materials have good reinforcement and anti-seepage effects on the surrounding rock under normal conditions, but the grouting effect is not ideal due to problems such as a long setting time, a low stone ratio, and poor crack resistance under high water pressure and in a dynamic water environment. In this study, we aimed to improve the physical properties, chemical properties, and microstructure of a cement-based slurry by forming a hydrogel through its chemical crosslinking with polyvinyl alcohol and boric acid as modifiers for the purpose of improving the permeability resistance of the surrounding rock grouting under high-water-pressure conditions, which can expand the function of traditional building materials. The grouting effect of the modified cementitious material on the surrounding rock was analyzed through indoor tests, the SEM testing of the performance of the modified slurry, the numerical calculation of the seepage field, and the application of the modified slurry in combination with the actual project to verify the water-plugging effect. The research findings demonstrate that (1) the additives boric acid and PVA can significantly speed up the slurry gel time, and the gel time can be controlled within 2–20 min to meet the specification requirements. (2) At a velocity of moving water > 1 m/s, the retention of the solidified modified slurry stone body reaches more than 80%. According to the SEM analysis, the structure of the solidified modified slurry stone body is dense and has good impermeability. (3) According to the numerical calculation analysis, the modified slurry can effectively change the seepage field of the surrounding rock and improve its seepage resistance. The water pressure outside the lining is reduced by 47%, 31%, and 22%, respectively, compared with no slurry, the pure cement slurry, and cement–water-glass grouting, and the indoor test and numerical simulation conclusions are consistent.

Funder

Higher Education Institutions in Anhui Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3