Thermal-Resistant Polyurethane/Nanoclay Powder Coatings: Degradation Kinetics Study

Author:

Jouyandeh MaryamORCID,Hadavand Behzad Shirkavand,Tikhani Farimah,Khalili Reza,Bagheri BabakORCID,Zarrintaj PayamORCID,Formela KrzyszofORCID,Vahabi HenriORCID,Saeb Mohammad RezaORCID

Abstract

In the present study, thermal degradation kinetics of polyurethane (PU) powder coatings reinforced with organo-modified montmorillonite (OMMT) was investigated. PU nanocomposites were prepared in different concentrations of 1, 3, and 5 wt.% of OMMT via the extrusion method. The microstructure of the nanocomposites was observed by scanning electron microscope (SEM) illustrating uniform dispersion of OMMT nano-clay platelets in the PU matrix except for the sample containing 5 wt.% nano-palates. Thermal degradation kinetics of the PU nanocomposite was investigated using thermogravimetric analysis (TGA) at different heating rates of 5, 10, and 20 °C/min. The results showed that the initial decomposition temperatures were shifted toward higher values (more than 40 °C for T5% and up to 20 °C for T10%) by introducing the nano-clay to the PU matrix. Friedman, Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), and modified Coats-Redfern iso-conversional methods were applied to model the decomposition reaction and the activation energy of the nanocomposite powder coatings. Overall, the presence of nano-clay increased the activation energy of the PU degradation up to 45 kJ/mol, when compared to the blank PU, which suggests very high thermal stability of nanocomposites. The Sestak-Berggren approach proposed a good approximation for the reaction model, especially at low temperatures. Thus, PU decomposition was detected as an autocatalytic reaction, which was suppressed by the barrier effect of OMMT nano-palates intercalated with polymer chains.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3