Corrosion Evolution of Nickel Aluminum Bronze in Clean and Sulfide-Polluted Solutions

Author:

Yang Liu12,Wei Yinghua1

Affiliation:

1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 230026, China

Abstract

Nickel aluminum bronze (NAB) alloys are reported to suffer accelerated local corrosion in sulfide-polluted seawater. In this work, the real-time in situ scanning vibrating electrode technique (SVET) was employed to monitor the evolution of the corrosion product film of a typical NAB alloy immersed in the clean and sulfide-polluted 3.5% NaCl solutions. In the sulfide-free condition, the corrosion current peak surged at the individual point of the NAB surface and receded to calm in 2 h. In the presence of the sulfide, however, multiple active points on the measured metal surface released high corrosion current for a long time, indicating that intense corrosion had occurred. The corrosion mass loss was more than four times the former. Global electrochemical techniques, scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were adopted to perform a comprehensive analysis of the composition of the corrosion product films. The results show that a dense layer of aluminum and cuprous oxide forms on the NAB surface in the sulfide-free solution, while a loose mixture of cuprous sulfide and cuprous oxide is detected in the sulfide-contaminated solution. This finding is believed to account for the observed distinction between the corrosion behavior of NAB in the two solutions.

Funder

Strategic Precursor Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3