A Study on Impact of Different Surface Treatment Agents on the Durability of Airport Pavement Concrete

Author:

Li Tianlun,Wu Yonggen,Wu Haoxiang

Abstract

Concrete surface treatment is one of effective methods to increase the durability of concrete. This study chose tetraethyl orthosilicate (TEOS), lithium silicate (Li2SiO3), SiO2 nanoparticles (nano-SiO2) as surface treatment agents, tested their resistance to water penetration, chloride ion penetration, frost, sulfate erosion and abrasion of concrete specimens with different strengths, compared and evaluated the impacts to the durability of concrete by using three surface treatment agents, researched the impact of concrete strength on the surface treatment effects, and analyzed the mechanism of these surface treatment agents in connection with microscopic tests. It was found that all three agents can improve the durability of concrete, of which, the treatment effect from using tetraethyl orthosilicate (TEOS) was the best; however, along with the improvement of concrete strength, its other effects were gradually reinforced except for some small improvement effect in resistance to frost, which means it is an ideal concrete surface treatment agent; for lithium silicate (Li2SiO3), the improvement effect of resistance to frost was the best with little impact on the strength of the concrete, however, the other performance improvement effects were a little bit worse than that of tetraethyl orthosilicate (TEOS), which means it is more suitable for airport pavement with a higher concrete resistance to frost; For SiO2 nanoparticles (Nano-SiO2), the surface treatment effect was extreme limited, not recommended to be solely used for airport pavement with its requirement of high resistance to frost. Upon scanning electron microscope (SEM), X-ray diffraction (XRD), fourier transform infrared radiation (FTIR) and thermo gravimetric analyzer (TGA) tests, the surfaced concrete specimens did not produce any new substances, and the effect of the surface treatment agents was mainly to improve the concrete performance by physical filling, or by filling the cavities with the hydrated calcium silicate gel produced in the chemical reaction. These results may direct the selection of surface treatment agents in airport engineering.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3