Hybrid Organic/Inorganic Piezoelectric Device for Energy Harvesting and Sensing Applications

Author:

Aleksandrova Mariya1ORCID,Tudzharska Liliya1,Nedelchev Krasimir2,Kralov Ivan2

Affiliation:

1. Department of Microelectronics, Technical University of Sofia, 1000 Sofia, Bulgaria

2. Department of Mechanics, Technical University of Sofia, 1000 Sofia, Bulgaria

Abstract

Novel hybrid organic/inorganic flexible devices with composite films, consisting of Ba0.5Sr0.5TiO3 (BST), were prepared by inserting BST nanocoating under spray deposited Poly-vinylidene fluoride-based co-polymer PVDF-TrFE. The study validated that the crystalline structure of BST remains unaffected by the presence of polymer. The 3D atomic force microscopic image of the composite sample confirmed the improved surface roughness and contact conditions after spraying the polymer. As a result, the hybrid sample exhibited a higher polarization current with reduced impedance and parasitic inductance. The enhancement of the stability of the piezoelectric parameters at multiple bending was observed for the hybrid sample in comparison with the BST single film transducer. The drop of the root mean square (RMS) voltage was 70% after approximately 340,000 numbers of bending against less than 3% for the hybrid BST+PVDF-TrFE device. Due to the effect of the separate layers and summed net charges, the piezoelectric voltage of the hybrid device was competitive to the piezoelectric oxide films, despite the lower piezoelectric coefficient of the polymer. The proposed solution paves the path toward lead-free, wearable energy harvesting devices for low-power consuming electronic devices.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3